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Need for Population Estimates

Accurate fine scale population estimates serve
as a fundamental tool for policymakers. Many
decisions involving access to services, distribu-
tion of vaccines and disaster relief, tracking of
migration, and more are informed based on the
most up to date population estimates for a re-
gion. Where these estimates are of insufficient
resolution, either spatially or temporally, opti-
mal decision making becomes difficult. Thus,
there is a need for accurate and sustainable fine
scale estimates of population globally, particu-
larly in response to the COVID-19 pandemic,
which requires efficient distribution of vaccines
to vulnerable people.
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Figure 1: Top-down vs. bottom-up approach

Census-Independent Estimation

Census-independent (or bottom-up) popula-
tion estimation uses updated demographic
information in periodic household surveys,
or microcensuses, and detailed visual infor-
mation offered by remote sensing technology
to predict intercensal population density in
non-surveyed areas.
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Figure 2: A) Regions of Mozambique (red) where microcensus was conducted, B) Distribution of gridded microcensus
data in Boanne (BOA), C) Remote sensing data sources, D) Polygon building annotation from SpaceNet (100m tiles), E)
Dot building annotation from Mozambique (100m tiles).

Recent Literature

Table 1: Summary of recent literature on topic of bottom up population estimation.
[1] [2] [3] [4]

Region of Interest Nigeria Sri Lanka Bo, Sierra Leone Nigeria

Input Resolution 0.5m (Maxar)
10m (Polygon data)
12-30m (Urban Footprint)
750m (Night time Lights)

30m (Landsat)

0.5m (Maxar), 100m
(WorldPop), various
(OSM school density,
household size)

Output Resolution 90m Village level City district level 100m

Input Data Cost High (Maxar data) Free (public data)
High (Maxar data) Free (public data) Free (OSM, WorldPop)

High (Maxar data)
Performance
Validation eTally data Train/test split LOOCV Train/test split
MeAPE - 28 11 -
R2 0.98 0.58 - 0.26

NOTE: LOOCV = leave one out cross validation, MeAPE= median absolute percent error

Evaluation Metrics

The data is split spatially into four approxi-
mately equal sized subsets (for each ROI sep-
arately), and we reported the error metrics over
pooled prediction from the four validation folds.
We chose several evaluation metrics:
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Example Building Footprints

Figure 3: Example grid cells and their footprints

Results

We observe that the model can effectively predict population, and outperforms the null model.
The model performs the best with either public and fine-tuned building footprints (BFIb) as
features, or only BFIb as features, and the performances are similar. A loss in accuracy is incurred
when using either public only or public and pre-trained building footprints (BFIa) as features.

Table 2: Summary of model performance
Features used R2 MeAPE aMeAPE MeAE AggPE
Public 0.05 51.8% 0.23 3.84 25.4%
BFIa -0.08 59.9% 0.25 4.02 32.1%
BFIb 0.54 39.2% 0.20 3.41 14.9%
Public + BFIa 0.05 50.1% 0.23 3.97 27.3%
Public + BFIb 0.53 42.1% 0.19 3.45 13.2%
Null Model -0.12 76.45% 0.41 7.57 1.68%

See Evaluation Metrics above for metric definitions. BFIa and BFIb are pre-trained
and fine-tuned building area estimates respectively. Predicted vs. observed plot (right)
summarizes the results for Public + BFIb.
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Takehomes

•Census-independent approaches have grown
in popularity in an effort to address
limitations of census data
•Existing literature relies heavily on features
generated through human supervision
• Inexact fine-tuned building footprints can
still produce high quality population
predictions with limited human intervention
•A small amount of sustainable ‘dot’
annotation is sufficient for this fine tuning

References

[1] M Weber et al., Remote sensing of environment,
204:786–798, January 2018.

[2] R Engstrom et al. PLOS ONE, 15(8):e0237063,
August 2020.

[3] R Hillson et al. International Journal of Health
Geographics, 18(1):16, July 2019.

[4] D Leasure et al. PNAS, 117(39):24173–24179,
September 2020.


